44 research outputs found

    Single-strand DNA Binding by the Helix-Hairpin-Helix Domain of XPF Contributes to Substrate Specificity of ERCC1-XPF

    Get PDF
    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble

    Recombinant protein expression and solubility screening in Escherichia coli: a comparative study

    No full text
    Producing soluble proteins in Escherichia coli is still a major bottleneck for structural proteomics. Therefore, screening for soluble expression on a small scale is an attractive way of identifying constructs that are likely to be amenable to structural analysis. Avariety of expression-screening methods have been developed within the Structural Proteomics In Europe (SPINE) consortium and to assist the further refinement of such approaches, eight laboratories participating in the network have benchmarked their protocols. For this study, the solubility profiles of a common set of 96 His6- tagged proteins were assessed by expression screening in E. coli. The level of soluble expression for each target was scored according to estimated protein yield. By reference to a subset of the proteins, it is demonstrated that the small-scale result can provide a useful indicator of the amount of soluble protein likely to be produced on a large scale (i.e. sufficient for structural studies). In general, there was agreement between the different groups as to which targets were not soluble and which were the most soluble. However, for a large number of the targets there were wide discrepancies in the results reported from the different screening methods, which is correlated with variations in the procedures and the range of parameters explored. Given finite resources, it appears that the question of how to most effectively explore ‘expression space’ is similar to several other multi-parameter problems faced by crystallographers, such as crystallization

    Implementation of semi-automated cloning and and prokaryotic expression screening: the impact of SPINE

    No full text
    The implementation of high-throughput (HTP) cloning and expression screening in Escherichia coli by 14 laboratories in the Structural Proteomics In Europe (SPINE) consortium is described. Cloning efficiencies of greater than 80% have been achieved for the three non-ligation-based cloning techniques used, namely Gateway, ligation-indendent cloning of PCR products (LIC-PCR) and In-Fusion, with LIC-PCR emerging as the most cost-effective. On average, two constructs have been made for each of the approximately 1700 protein targets selected by SPINE for protein production. Overall, HTP expression screening in E. coli has yielded 32% soluble constructs, with at least one for 70% of the targets. In addition to the implementation of HTP cloning and expression screening, the development of two novel technologies is described, namely library-based screening for soluble constructs and parallel small-scale high-density fermentation

    Application of high-throughput technologies to a structural proteomics-type analysis of Bacillus anthracis

    No full text
    A collaborative project between two Structural Proteomics In Europe (SPINE) partner laboratories, York and Oxford, aimed at high-throughput (HTP) structure determination of proteins from Bacillus anthracis, the aetiological agent of anthrax and a biomedically important target, is described. Based upon a target-selection strategy combining ‘lowhanging fruit’ and more challenging targets, this work has contributed to the body of knowledge of B. anthracis, established and developed HTP cloning and expression technologies and tested HTP pipelines. Both centres developed ligation-independent cloning (LIC) and expression systems, employing custom LIC-PCR, Gateway and In-Fusion technologies, used in combination with parallel protein purification and robotic nanolitre crystallization screening. Overall, 42 structures have been solved by X-ray crystallography, plus two by NMR through collaboration between York and the SPINE partner in Utrecht. Three biologically important protein structures, BA4899, BA1655 and BA3998, involved in tRNA modification, sporulation control and carbohydrate metabolism, respectively, are highlighted. Target analysis by biophysical clustering based on pI and hydropathy has provided useful information for future target-selection strategies. The technological developments and lessons learned from this project are discussed. The success rate of protein expression and structure solution is at least in keeping with that achieved in structural genomics programs

    Expression screening, protein purification and NMR analysis of human protein domains for structural genomics

    No full text
    Structural genomics, the determination of protein structures on a genome-wide scale, is still in its infancy for eukaryotes due to the number and size of their genes. Low protein expression and solubility of eukaryotic geneproducts are the major bottlenecks in high-throughput (HTP) recombinant protein production with the E. coli expression systems. To circumvent this problem we decided to focus on separate protein domains. We describe here a fast microtiterplate based, expression and solubility screening procedure, using a combination of in vitro and in vivo expression, and purification with nickel-NTA magnetic beads. All steps are optimized for automatic HTP processing using a liquid handling station. Furthermore, large-scale expression and protein purification conditions are optimized, permitting the purification of 24 protein samples per week. We further show that results obtained from the expression screening can be extrapolated to the production of protein samples for NMR. Starting with 81 cloned human protein domains, in vivo expression was detected in 54 cases, and from 28 of those milligrams of protein were purified. An informative HSQC spectrum was recorded for 18 proteins (22%), half of which were indicative of a folded protein. The success rate and quality of the HSQC spectra suggest that the domain approach holds promise for human proteins

    Expression of potein complexes using multiple E. coli protein co-expression systems: a benchmarking study

    No full text
    Escherichia coli (E. coli) remains the most commonly used host for recombinant protein expression. It is well known that a variety of experimental factors influence the protein production level as well as the solubility profile of over-expressed proteins. This becomes increasingly important for optimizing production of protein complexes using co-expression strategies. In this study, we focus on the effect of the choice of the expression vector system: by standardizing experimental factors including bacterial strain, cultivation temperature and growth medium composition, we compare the effectiveness of expression technologies used by the partners of the Structural Proteomics in Europe 2 (SPINE2-complexes) consortium. Four different protein complexes, including three binary and one ternary complex, all known to be produced in the soluble form in E. coli, are used as the benchmark targets. The respective genes were cloned by each partner into their preferred set of vectors. The resulting constructs were then used for comparative co-expression analysis done in parallel and under identical conditions at a single site. Our data show that multiple strategies can be applied for the expression of protein complexes in high yield. While there is no ‘silver bullet’ approach that was infallible even for this small test set, our observations are useful as a guideline to delineate co-expression strategies for particular protein complexes

    Structural properties of the promiscuous VP16 activation domain

    No full text
    Herpes simplex virion protein 16 (VP16) contains two strong activation regions that can independently and cooperatively activate transcription in vivo. We have identified the regions and residues involved in the interaction with the human transcriptional coactivator positive cofactor 4 (PC4) and the general transcription factor TFIIB. NMR and biochemical experiments revealed that both VP16 activation regions are required for the interaction and undergo a conformational transition from random coil to α-helix upon binding to its target PC4. The interaction is strongly electrostatically driven and the binding to PC4 is enhanced by the presence of its amino-terminal domain. We propose models for binding of VP16 to the core domains of PC4 and TFIIB that are based on two independent docking approaches using NMR chemical shift changes observed in titration experiments. The models are consistent with results from site-directed mutagenesis and provide an explanation for the contribution of both acidic and hydrophobic residues for transcriptional activation by VP16. Both intrinsically unstructured activation domains are attracted to their interaction partner by electrostatic interactions, and adopt an α-helical conformation around the important hydrophobic residues. The models showed multiple distinct binding surfaces upon interaction with various partners, providing an explanation for the promiscuous properties, cooperativity, and the high activity of this activation domain

    Enzyme free cloning for high throughput gene cloning and expression

    No full text
    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EFC) procedure, a PCR-only method that eliminates all variables other than PCR efficiency by circumventing enzymatic treatments. We compared the cloning efficiency of EFC with that of Ligation Independent Cloning (LIC). Both methods are well suited for HTP cloning, but EFC yields three times more transformants and a cloning efficiency of 91%, comparable with recombinational cloning methods and significantly better than LIC (79%). EFC requires only nanogram amounts of both vector and insert, does not require highly competent cells and is, in contrast to LIC, largely insensitive to variations in PCR product concentration. Automated protein expression screening of expression strains directly transformed with EFC reactions showed, that the traditional preceding step via a cloning strain can be circumvented. EFC proves an efficient and robust HTP cloning method, that is compatible with existing Ligation Independent Cloning vectors, and highly suitable for automation

    NMR characterization of foldedness for the production of E3 RING domains

    No full text
    We summarize the use of NMR spectroscopy in the production and the screening of stability and foldedness of protein domains, and apply it to the RING domains of E3 ubiquitin-ligases. RING domains are involved in specific interactions with E2 ubiquitin-conjugating enzymes and thus play an essential role in the ubiquitination pathway. Protein production of the Zn2+ containing and cysteine rich RING domains for molecular studies frequently turns out to be problematic. We compared the expression and solubility of 14 E3 RING/U-box domains fused to the N-terminal tags of His6, His6-GB1, His6-Trx and His6-GST at small scale and analyzed, by NMR spectroscopy, their correct folding after purification. The addition of GST, Trx or GB1 to the N-terminal His6 tag significantly improved both the expression and solubility of target proteins as compared to His6 tag alone. More importantly most of the immobilized metal affinity chromatography (IMAC) purified proteins were largely unfolded as judged by analysis of the 1H–15N HSQC spectra. We demonstrate that imidazole causes a concentration dependent decrease in stability of RING proteins ascribed to metal depletion and resulting in unfolding or precipitation. In contrast, using glutathione affinity chromatography, the His6-GST fused RING and U-box domains were purified as correctly folded proteins with high yields. Our data clearly demonstrate that IMAC should be avoided and that GST-fusion affinity chromatography is generally applicable for expression and purification of Zn2+ containing proteins
    corecore